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ABSTRACT

NASA is curlently investlgatlng the use of robotlc manipulators for the

mating and demating of umbilical fuel lines to the Space Shuttle Vehicle

prior to launch. Force feedback control is necessary for this task in

orde, to n iuimiy_, the contact forces which will develop during r_,ating. %he

objective of this project is to develop and demonstrate a working robotic

force control system at Kennedy Space Center.

Initial experimental force control tests with an ASEA IRB-90 industral

robot using the system's Adaptive Control capabilities indicated that con-

trol stability would be a primary problem. An investigatlon of the ASEA

system indicated a 0.280 second software delay between force input commands

and the output of command voltages to the servo system. This computational

dela5 was identlf±_d as tile primary cause of the instability. Tests o. a

second path into the ASEA's control computer using the MicroVax II supervi-

sory computer indicate that the time delay would be comparable, offering no

stability improve_kerJt. All existing Inputs to the ASEA control compute_

hardware were found to hav_ too long of a delay for force control stabili-

ty.

At, alterna_aw, app,,_ach was doveloped where the digJla] control system of

the robot was disconnected and and an analog electronic force controller

was used to control the robot's servo system directly. This method allowed

the robot to use force feedback control while in rigid contact with moving

three degree-of-freedom target. Tests on this approach indicated adequate

force feedback control even under worst case conditlons. A strategy to

combine the analog force control system along with the existing

digltallv-contrnlled vision system was developed. This requires switching

between the dlgital controller when uslng vision control and the analog

controller when using force control, depending on whether or not the mating

plates are in contact.
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The Robot Application and Development Laboratory (RADL) at Kennedy Space

Centv, ha_, b_t:,n establlshed to investigate robotic solutions to launch

vehicle processlng p_obler, s. The intent [_f the laboratory is to provide a

testbed where robotic components can be used to develop workable engineer-

Ing solutions for hazardous and repetltivc shuttle and payload processing

activities.

One such task is the matlng and demating of umbilical fuel lines for the

_.aln tank o£ the 5pace Shuttle Vehicle (SSV). Presently, the umbillcals

must remain attached to the SSV until slightly after launch, so that in

case of a launch abort, the fuel can be rapidly removed to make the launch

vehicle safe. Exploslve bolts and a mechanical teat-off feature are used

to disconnect the lines immediately after launch, offering the possibility

of damage to the shuttle during launch. The present manual methods of

reconnecting the /u,'i lines afte_ a launch abort requile over fifteen

hours, and include numerous safety proble_:_s to both the technicians and

astronauts. The ab_llty to use a robot Io disconnect the umbllicals prlor

to launch and then reconnect them rapidly in case of an abort would offer a

_:_jOl" ]E:pl-oveE:el)i ill lallllC}i safety.

The umbilical mating problem places exten:_ive demands on the sensory capa-

b11itzes of the robotic system. Firsl, the SSV is a dynamic structure,

continually moving in a random fashion. Second, the mating problem

_equires high relative positioning accu_acy between the umbilical connec-

tors. Finally, the forces encountered during contact must remain low to

avoid damaging either the umbil]cals or the SSV.

Three distinct phases must occur for umbi:[ical mating using a robot. The

first phase involves the use of vision tracking to allow the robot to

approach and track the umbilical target. The second phase requires an

actual mating process to occur. This will require a combination of mechan-

ical guldance, compliance, and actlve force feedback control and is the

least understood task of the problem. The third phase happens afte_ a

solid mating has occured. In this case, the random motions of the SSV must

be dupllcated by the robot using a force feedback approach to avoid large

contact forces. Practically, the SSV must be able to lead the robot around

such that the contact forces remain below a maximum tolerable value.

A major goal of the RADL zs to provide a :_easibility demonstration of this

capab]lit_ by uslng both force and vlsLon informatlon to dock and mate a

simulated umbilical plate with a moving target. To do this, force feedback

control will be required on the exlstlng ASEA IRB-90 robot.

Previous work on force feedback with the ASEA robot indicates a very high

tendency for instability under operating conditions required by the umbili-

cal mating problem. The goal of this work is to identify the instabillty

proble_ and develop a stable and effectiw:, force control system.
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2.0 FOb<_._. FEEDBACK _ONTROL

2. I DAMI'ING CONTROL
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The th,e'_retical dificultles of arbitrarily controlling a combined vector of

force and position have been dealt with by several authors, as summarized

in reference [I]. However, the practical implementation of these

approaches requires the In,plen,entation of extensive algorithans based on an
accurate mathematical model of the robot.

On,, sl::4_l,:: vet qult_ effective approach to force control is that of dampzng

controi, also known as trajectory perturbation and accomodation control.

With this approach, the velocity of the robot is proportional to and in the

direction opposite of the, applied force, acting llkp a pule dare,ping ele-

:_;ent. l_r effect, the. _ol)ot raoves so as to relieve the folces genelated

during contact. The proportional constant between velocity and force _s

defined by the force feedback gain Kf.

2.2 DESIGN REQUIREMENTS

Force control is requlred to both guide the umbilical lanes in the cham-

fered socket during r:._tang as well as allow the robot to track the dynamic

motion of the SSV afte_ mating. Contact forces under both conditions must

not exceed the forces currently encountered during manual mating. For this

study, this value is assue:ed to be 60 pounds. A worst case estimate of the

dyna::,ic motio, of the SSV [21 is a sinusoidal motion with a maxlmum ampli-

tude of 6 inches and a frequency of 0.2 Hz., leading to a maximum speed of

II inches per second. Based on these requirements, the ndnimum value for

the force feedback gain for tracking Is 0.18 in./sec./Ib.

An inherent condltlon for any control system is stability. An upper limit

for the force feedback gain is selected to be one half of the gain for mar-

ginal stability, providlng a gain margin of 2.0. The control design

problem ls thus reduced to selecting a gain greater than 0.18 and less than

half the marginal stabillty gain.

2.3 STABILITY

It has long been known that communication and computatjonal delays in con-

trol systems have an adverse effect on the system stability. This is

especially true in the case of force feedback. For example, consider a pin
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u._].L:' force feedback control inside a 1 degree-of-freedom hole. Without a
delay in the force feedback signal, contact with one side of the w,,]l
results in a command:_,t_tloi_to moveaway,from the wail, with the conmLanaed
speed going to zero whenthe pin is centered. This behavior is demonstrat-
,_! i_: [Jguit la. k'ith a significant delay, the velocat\ co:_.:al.i alway._,
lags the force, resulting in an cases wh_re thc cor_anded veloclty is in a

direction which increases the contact force, as shown in Figure lb. This

can result In Instabzl]tv.

A very simple model is used to predict marginal stability

o_de_-of-magnitude estlmates for both [orce feedback gain and tlme delay.

The model assumes ideal dynamics of the _obot and no force interaction with

the servo system. Using a time lag of 0.280 seconds as found in the ASEA

controller, the maximum gain for stability is found as 0.015 in./sec./Ib.

Th_s results in a maximun_ force feedback gain of .0075 with a gain margin

of 2.0. This result is 24 times too low for proper force tracking.

Requiring a value of 0.18 for the force feedback gain Kf results in a max1-

::un tim,, delay of 0.044 seconds fo_ stab ilty. Note that both estimates do

not take into accouter the robot's dynamics, and ale uppe_ limlts on p_acl]-
cal values.

2.4 SINGLE AX15 VS. Mt LTIPLE AXIS CONTR4)L

The velocity lesponse of the _obot to an applied force should be directly

opposite to the direction of the force. In general, this requires actively

controlllng all six axes. The ideal for_:e-velocitv relationship for damp-

_ng control therefore requlres coupled response between the motor axes and

the applied force. This multiple-input ::_ultiple-output (MIMO) relationship

between the force vector and the axis w_locitv command is described by the
kiIlen,atics:

where:

-1

V = K ¢ J (9) * F

V ls the desired velocity vector

K is the damping control gain matrix

3 is the Jacobian matrix

O is the angular position of the links

F ls the measured force and torque vector

A simplifying approach ls to control individual axes which are relatively

coupled to the TCP axes of the force/torque sensor. This can be represent-
ed as:

V =K_ K1 _, F

where :

V ls the desired velocity vector
ORIGINAL PAGE l_

OF POOY, QUALITY
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K is the damplng control gain matrix

Kl is a fixed cooFdinate Iransform in the force/torque sensor

K _'.KI _s d_agonal matrlx

F is the measured force and torque vector

lhls approach allows each axis to be treated as an indlvldual single-lnput

s_ngle-outpul !SISO_ systems over a small range.

Ihls SISO apploach will be used in thls study due to slmpllcity. The

requirements for implementation of the superior MIMO approach wall be dis-

cussed in the summary.

'2.5 COMPL i A._LL

An inherent requ]remenl for the damping control approach is a degrep of

¢'t_:pl]an(', <,* ela::l]cll\ e]lht'l Jll the r{.bol itself Ol lhrouE!b tll_' addill_,_,

of an external compliant element between the applied force and the robot.
Fol a stiff robot _n contact with a rigid objects, the amount of motion of

th,: _obet need onl_ h,, a fe_ thousandths of an inch to cause a wldp change

in the force level. The addltion of passive compliance can greatly

_ncrease the positional change for the same force level. In effect, the

passive compliance decleases the force sensitivity to positional changes.

Therefore, the force control algorithm must be able to operate under a wide

range of possible compliance values.

An experimental test was performed to determine the ASEA robots compliance.

A lead screw was used to apply force the robot about the base rotation axis

while under positional control of the robot's servo system. Force was

_.easuJed tJ_:tl_', lhr JR3 s_x axis force!t_,rque transduce_ while position was

measured by a machlnlst's d_al indlcator. The elastic coefficient for the

robot in this posltion was found to be 407 +/- 15 Lbs. with a 0.015 inch

backlash. Thls value is posltlon depend_:_nt, but it paovldes an approximate

basellne value for typical values.

3.0 IMPLEMENTATION OF FORCE CONTROL

3.1 ASEA CONTROLLER OVERVIEW

The implementatlon of force feedback control depends completely on the

capabllltles bullt into the ASEA control computei. The contloller is very

well designed for industrial purposes, but can only use as designed by

ASEA. Internal modiflcatlons in the controller software are impractical



due to ASEA's insistance on not releasing software documentation due to
proprietary reasons.

The ASKAcontroller consists of two separate controllers, referred to as

the control computer and the axls controller. The control compute_ detex-

mines trajectories, system status, and performs kinematic calculations.

The axis control consists of a digital proportional position control loop

surrounding an analog electronics velocity control loop for each link. The

positional error determined by the digital controller of the ASEA is con-

verted to a digital signal and used as a reference velocity command for

that axis.

The controller allows only two paths for incorporating external sensory

input, referred to as Adaptive Control and Supervisory Control. An over-

view of the possible methods for force control is shown in Figure 2.

The classical problem of gain versus stability is encountered. A

sufficient gain for force tracking is too large for stability. The conclu-

sJol) Is that the time delays encountered using either the MicroVAX II or

Adaptive Control inputs to the ASEA will not allow stable force control

using values which would meet the force tracking capabilities of the robot.

3.2 ADAPTIVE CONTROL OPTION

The ASEA robot has an input option designed for contour tracing, which

implements a simple damping-based force feedback control algorithm. This

option, known as the Adaptive Control option, refers to adapting the

robot's trajectory il_ real-time due to external sensory input, rather than

the more traditional designation referring to parameter adaptive controller

compensation systems. This input allows direct force feedback control from

the force/torque sensor sensor into analog communication port of the robot

cock,roller. This port was previously instrumented by the author [3] during

the 1987 Summer Faculty program and is currently being used in a 3 D.O.F.

lead-around demonstration.

While this port was originally designed by ASEA to implement force feedback

control, it has several drawbacks, The adaptive control feature allows 3

D.O.F. of MIMO force control in a rectangular (RECT) coordinate system,

keeping the orientation of the robot terminal device constant, as desired

for umbilical mating. However, a controller error causes a robot error,

halting motion of the robot. This is unacceptable in a contact situation.

Use of the MODRECT coordinate system uses a force controller which works

without these problems, but only on a SISO basis. Again, this approach

works well In lead-around demonstrations, but has been previously shown to

be unstable at control gain values within those required by the design con-
straints.
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Test data was taken with a digitizing oscilloscope to determine the direct

delay b_'tween the adaptive control input port and the command output to the

selvo drive systen, indlcated a delay averaglng at 285 milliseconds.

A classic demonstratlon of the effect of this delay on stab_lJtv is provld-

ed llJ F1gule$ 3 and 4. In both cases, force feedback was implemented using

the adaptive control (contour tracing) feature of the ASEA. Only a sight

change in the feedback gain determines whether the system is stable or

unstable. Note that the marginally stable gain value fo_ Kf of .018

in./sec./Ib, is 20 times (using an appropriate gain margin) below that

required by the design specifications. Notice also the extensive delay

_in_ between the io_ce _,easurement and the resuitlng servo command.

Contact with support engineers from ASEA indicate that they were unaware of

the extent of thls delay, and indicated that there is no immediate solution

to this delay problem. Further, ASEA will not provide the means to modify

to the controller software stored in EPROM or the software documentation.

3.3 SUPERVISORY CONTROL

The primary path into the ASEA controller is through the Supervisory Con-

trol method. ]'his approach allows a_ external computer to determine the

trajectory of the robot and pass the command positions directly to the ASEA

controller in an open loop fashion. This approach is presently being used

sucessfully with the 6 degree-of-freedom (D.O.F.) vision control system.

In this instance, pos]t]onal errors are determined by a complex vision sys-

tem, which passes these errors on to a MicroVAX II computer, This computer

i_ tui_ passes the desaaed absolute positlon of the robot to the ASEA con-

troller through a comm_unication protocol known as AHUP.

Thls approach has sevelal advantages for force feedback control. First,

all control calcualtions can occur in a single computer. Second, the force

and vision control can be easily integrated. Finally, this approach allows

for the implementation of a MIMO force feedback control algorithm in world

coordlnates for all six degrees of freedom, with the ASEA controller per-

forming the necessary kinematic calculations.

The problem with this approach is the extensive communication protocol

overhead of the AHUP communication package along with the computational

speed of both the Mic_oV_X II and the ASEA control computer. The extensive

delay of this approach creates extreme difficulties in stabilizing the
robot.

A rough estimate of the expected delay using this approach can be deter-

mlned by using data fron a test of the vision system delay time. In this

test, a vlslon target was given a step positional change which was recorded

along with the co_n:and to the analog servo system. Results are shown in

Figure 5. Notice that there appears to be approximately a 350 millisecond

28
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Figure 3. Force Feedback Control Stability Using. ASEA Adaptive

Control Force Feedback (Kf = O.Olb in/sec/lb)
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Figure 4. Force Feedback Control Stability Using ASEA Adaptive

Control Force Feedback (l_f = 0.020 in/sec/Ib)
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Figure 5. MicroVax - ASEA Controller Time Delay

Using Vision System

delay between initiation of the movement and the initiation of the servo

control signal.

The following table lists estimates of the computation time for the vls]on

control process, along with an extrapolation of the lag which would be

encountered by using force feedback theough the MicroVAX If.

ESIIMATLD TIME DELA_ COMPONENTS OF VISION SYSTEM

TIME TASK

(msec)

33

33

l0
9

35O

Camera refresh rate

System I000 processing

System I000 to MicroVAX II communication

MicroVAX II and ASEA control delay

Total Delay Time

Result: MicroVAX II and ASEA controller delay: 274 msec.

Notice that the compute_ tln:e delay is comparable to that encountered using

the Adaptlve Control inputs. Since force control through the MIcroVAX II

3O
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llnk can be no taste_ than the present vlslon control algorithm, the con-

c]uslon is that for<e control implementation uslng the MicroVA× I] wi]] not

allow for stable force feedback control at gains which will allow adequate

tracking.

3.4 ALDVANCED ALGORITHM DEVELOPMENT

There has been onsiderable theoretical development in control theory,

including methods to handle stabillty problems associated with time delays

[4]. The most commonly used approach is that of the Smith predictor, where

a detailed model of the robot's dynamics without delay is used to predict

the dynanL1c response and cancel the delayed value. Notice that this

approach takes delay only out of stability argument, not out of system, and

requires an accurate mathematical model of the dynamic behavior of the

robot. Attempts were made to develop such a model. However, the

slgnal-to-noise ratio of the measured variables was too low for slmple non-

stochastic modeling. There were also modeling problems associated with the

nonlinearities of the system, including posltional controller gain, back-

lash behavior du_±_g contact as well as posltion-dependent elasti_±t_
variations.

Under such conditions, the identification required for an accurate model of

the robot under contact conditions would requlre a considerable amount of

engineering effort. With a simple model, the question of the algorithms

robustness to modeling inaccuracies is in question. Esoteric approaches

such as a parameter-adaptive Smith predictive control algorithms make for

interestlng research, but would prove very difficult to implement.

4.0 ANALOG CONTROLLER APPROACH

4.1 ALTERNATIVE APPROACH: AN ANALOG FORCE CONTROLLER

The ASEA robot's digital control computer has an unavoidable 0.280 second

delay and cannot be used for high gain f¢_rce feedback control. One possi-

ble approach to get force feedback control working is to bypass the digital

controller entirely. This approach, referred to here as the "Analog Force

Control (AFC) " approach, proposes an electronic hardware modification to

the axis control of the robot. The approach takes advantage of digital

position control/analog velocity control structure used by the ASEA con-

troller. The digital position control]er is physically disconnected and

replaced by an analog velocity controller, Since this method uses analog

electronics, the controller delay is completely eliminated.

31



Analog vc_Itages fro_ the force/torque transduce_ are conditio_led iu an ana-
log electronic circuit, which would then inject a voltage into the sun_ing
ju_ctloxl of the velocity control feedback loop for each of the robot's

motor through an external tachometer input line.

By directly commanding the velocity of each motor to be proportional to the

force, a single degree-of-freedom damping control algorithm Js implemented

about each axis.

4.2 IMPLEMENTATION

By giving the motor a new velocity command, the digital position controller

will determine that a positional error exists and therefore it wlll attempt

to compensate for this. The combination of two controllers for one axis

results in violent oscillations. The obvious solution is to simply remove

the postion control input from the motor.The AFC therefore operates thP

robot without any position control from the ASEA.

There are other practical problems which were overcome, including the elim-

ination of the motor brakes. This was done by running a zero velocity move

command program on the ASEA robot. Another problem included the strong

nolse oTi the analog control electronics of the ASEA, due primarily to the

high frequency switching of the pulse-width modulated (PWM) power amplif-

iers used for driving the motors. This problem was not able to be

addressed due to the short time allowed for testing,

4.3 POSITIONAL RESPONSE TESTS

The initial test procedure for the AFC approach followed that used last

year in determining the characteristics of the adaptive control of the ASEA

robot, Initially, a square wave voltage was applied to each axis and the

steady-state velocity was measured. The voltage-velocity relationship for

each axis is:

TABLE 1

VELOCITY VS. VOLTAGE FOR DIRECT MOTOR CONTROL

AXIS I:

AXIS 2:

AXIS 3:

147 in./sec./volt

41 in./sec./volt

65 in./sec./volt

32
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4.4 FORCERESPONSETESTS

ORIG*._J'AL7_',GEIS

',_)F POOR Q_JALI'I_

The base rotation axis was initially used for force control testing. A

s_:ple attenuallolJ c_rcu_t was built to attenuate output voltages from the

,IR3 fo_celtorque sensor before being connected to the ASEA axls control

board. An initlal galn of 0.02 volts/volt was used. For ba_, rotatiou,

the relationshlp between the amplifier gain Ka and the force feedback gain

Kf = 6.0 * Ka

Initial lead around tests proved that the robot did respond in a damping

control mode. In fact, the robot's motion was considerably smoother with

thi_ approach than wlth the similar Adaptive Control lead around demonstra-

tion.

Initial impact tests were performed where _he robot was given a consta_t

bias voltage simulating a specific force set point. The robot ran at a

constant veloclty until impacting a rigld _able, where it would attempt to

apply a constant force command. When this test was previously performed

wlth the Adaptive Co_trol feature of the A!;EA, the robot would _ake con-

tact, jump away from contact several inches, again approach at constant

velocity, and repeat the cycle. The jump away from contact behavior, indi-

catxve of instabilit), was observed only fo_ very hlgh force control gains

with the AFC approach.

Using the gain values observed from this test, a l D.O.F. stability test

was performed using a pin attached to the robot with break-away bolts. An

experimental determination of the marginal stability gain was performed

expe_Imentally. Marginal stability occured with the electronic gain Ka set

at 0,035 or equivalently a force feedback control gain of 0.21 in./sec./ib.

Notlce that this value falls within the p_eviously defined design specifi-

cations .

4.5 1 D.O,F. FORCE TRACKING TESTS

Force tracking tests were performed by using a single axis of an external

three axis simulator table, designed to simulate the motion of the SSV on

the pad. Typlcal test results are shown in Figure 6. Notice that the

force appears 90 degrees out of phase with the position, or equivalently in

phase with the velocity, as expected with the damping control approach. In

thls example, the force control gain Kf was set at 0.12 in./sec./ib., which

corresponds well with the maximum observed velocity/force ratio of 0.11

in./sec./Ib. Tracking tests were performed with speeds of up to 10.5

in./sec, with maximum force levels not exceeding 70 Lbs., indicating

experimentally that the AFC approach can jointly meet both the tracking and

stability requirements for force feedback control.
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o-1
_- FORCE MAXIMUM FORCE = 55 LB.

MAXIMUM VELOCITY = 7.01 IN/SEC

:KiO

Figure 6. I D.O.F. Force Tracking Test

(Kf = 0.089 in/sec/lb)

Problems occur when the range of travel along an axis is large enough so

that the angle between the insertion pin and the recepticle becomes large.

The angle where this becomes unacceptable is dependent on the flexibility

of the pin as well as the chamfer of the recepticle. However, the robot

was able to maintain contact over the maximum range of travel expected by

the SSV. This orientation problem in one area where passive compliance

will be vital to the umbllical mating project.

4.6 3 D.O.F. FORCE TRACKING TESTS

With the success of the I D,O.F. controller, the testing of a 3 D.O.F.

analog force controller was the necessary next step. In the I D.O.F.

case, the motion of the base rotation of the robot (axis I) was in the X

d:rection of the force/torque sensor, allowing the direct (SISO) control of

the axis from the X direction force measurement. However such orthogonal

relation between the robots axis does not occur for the remaining Y (verti-

cal) and Z (inwardi axes of the sensor. In effect, a MIMO solution must be

found.

For a specific robot configuatlon compatable with its position for contact

with the simulator table, the motion of the second and third joints is

approximately 45 degrees off the Y and Z axes, as shown in Figure 7. The
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_:_I, tlanSfU_:_ sI_uwn ca,_ appioxl_.ately _elatt desired rectangulal motion

with the necessary joint motion for small deviations about this point.

The electronic controller shown in Figure 8 was built to allow SISO control

of Axis ! as well as MIMO control of Axes 2 and 3. Offset adjustments were

lncluded for each motor, as was a set point bias on the Z axis to allow fo_

a constant force set point in that direction.

Again the system was tested in the lead around mode. The decoupling of the

Y and Z motion was not exact, but was within 5 degrees and was considered

sufficient for tracking testing with the three axis simulator. For these

tests, a rigid pln with break-away screws was used. The robut was initial-

ly guided into the recepticle, the force controller was started, and then

table motion was begun. The robot was able to follow the table in all

three axes, as shown in Figure 9 and on the videotape of the experiment.

Due to a lack of time, only a cursory tuning of the second and third axis

controller gains was performed. Therefore, tracking velocities for this

test were lower than worst case conditions. Force levels remained fai;ly
constant, reaching a maximum of 50 Ibs. in the Y axis. This force is

perhaps due to an axls bias p_oblem.

4.7 SUMMARY

In summary, a simple 3 D.O._. Analog Force Controller was built for 3 axis

force feedback tracking of a moving target. The force control was suffi-

cient in one axis to reach speeds of up to 10.5 in./sec, while keeping the

forces below 70 Ibs. The ability to track in 3 D.O.F. was demonstrated.

Due to a lack of time, only a simple demonstration could be developed.

However, all evidence indicates that with some refinement, this approach

should be able to meet the design conditions for 3 D.O.F. force feedback
control of the robot.

/

5.0 FUTURE DEVELOPMENT OF FORCE CONTROL FOR UMBILICAL MATING

5.] EXTENSION TO 6 D.O.F.

The extension of this analog control approach to the orientation axes will

require considerably more effort than the the simple analog force controll-

er presented. The primary d_f_lculty will be handling the coordinate

transform between the force-torque sensor and the axes of the robot. Th_s

will require position information to be extracted from the ASEA. Furthe,,

the complexity of the MIMO interaction will be more difficult, resulting in
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Figur_ 9. 3 D.O.F. Force Tracking Test

extensive interaction between the contact forces and the motion of the

_obot.

On an applied note, the three oreintation axes use digital velocity control

loops, xathel thaal analog loops, as used by the three proximal axes. This

requires direct control of the analog current loop. Also, disconnecting

these axes fro_: the robot triggers an ASEA controller fault, shutting down

the robot. All of these problems will require consderable effort to

achieve.

Note that the_e appears to be no immediate need for active orientation con-

trol for the initlal umbilical mating test. Passive compliance should

prove satlsfactor_ fol the short tenT.,

5.2 FUTURE WOP_ ON FORCE FEEDBACK CONTROL

The following is a llst of future tasks designed to improve the performance

of _he Analog Force Controller.

I. Professional construction of analog electronics controller card.

2. Electronically switchable robot interface.

3. Noise identlflcation and supression in electronics.

4. Circuit diagram of Op-Amp input to #,SEA axis board.
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_. Better joint coordination design.

6. Model for contact force.

7. Model-based controller tuning.

8. Integration with passive compliance.

9. 6 D.O.F. axis control investigatlon.

5.3 COMB[NATION OF VISION AND FORCE

In the prototype umbilical mating tests, the force controller must work in

conjunction with the existing 6 D.O.F. vision system. The integration of

the two has been delayed until both force and vlsion have been capable of

operating separately. The following is a posslble senario of how vision

can be combined with the 3 D.O.F. analog force controlleY.

POSSIBLE VISION/FORCE MATING PROTOCOL

•

e

•

Q

•

m

6 D.O.F. vision system brings robot to within force capture aper-

ture.

MicroVAX I[ initiates control changeover from vision to force

control by triggering electronic switchover to analog control of

robot.

Strong force bias in Z direction from analog board moves _obot

into contact with target chamfers, force control in X and Y direc-

tions guides the robot to mated position. PassivP compliance

handles the orientation misalignn_ents.

MicroVAX triggered collets rigidly

ground-side umbilical plates.

attach flight-side and

Bias in Z direction removed, forte control allows robot to track

motion of SSV.

MicroVAX triggers demate by firs! requests position information

from ASEA controller to be u_;ed as a new baseline position for

vision system.

MicroVAX switches control from awbalug to ASEA digital _:otLtroller

using vision system for withdrawl of robot.
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5.4 SAFTE¥

There is a safety problem inherent any time two objects are in contact.
This is especially true of the ASEArob_t whenused with the Analog Force
Controller• To avoid injury, the analog _ontroller should only be used by
NASA and contractor personnel. One persianshould always be in direct con-
tact wlth an emergency stop button• For protection of equipment,
break-away pins should be used along witJ_ suitable current limits for both
the robot and the simulator table.

5.5 CONCLUSIONS

The ASEAcontroller is not capable of providing high-speed sensory control•
Efforts to use the force/torque sensors with the MicroVAX II for force
feedback control will encounter instability problems similar to those

encountered with the Adaptive Control functions of the robot. Force feed-

back will not work through either adaptive control port of ASEA or the

MicroVAX II path without extensive control system development to provide

compensation for the software lags _n the ASEA controller.

An alternate solution is to switch the existing serve control system

between the digital and an additional analog controller for force feedback

control. This form of force feedback control has been demonstrated to pro-

vide satisfactory performance for three D.O.F force feedback control

without using passive compliance devices•

The 3 axes of AFC system can be coupled with passive compliance for the

orientation axes and the vision system for initial target approach to

satisfy a preliminary remote umbilical demonstration. However, the 3

D.O.F. analog force controller is not a very satisfactory solution, and

future developments requiring force feedback control will be severely lim-

ited.
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